

Should we perform mass screening for AF ? Isabelle Nault MD Cardiac Electrophysiologist IUCPQ

Screening for AF

• Who should we screen?

• How should we perform screening?

Wilson criteria for screening

- Condition should be an important health problem
- Natural history of the condition should be understood
- There should be a recognisable latent or early symptomatic stage
- There should be a test easy to perform and interpret, acceptable, accurate, reliable, sensitive and specific
- There should be an acceptable treatment
- Policy on who should be treated
- Diagnosis and treatment cost-effective
- Case-finding should be a continuous process

AF: Frequent Health problem

- Lifetime risk of developing AF in patients > 40y is 1 in 4
 - Lloyd-Jones et al, Circulation 2004
 - From the Framingham Heart Study

- Up to 75% of people do not experience symptoms while in AF
 - Israel et al, JACC 2004

Stroke: Important health problem

- 20% of CVAs are attributable to atrial fibrillation
- During AF, anticoagulation diminishes the risk of embolisms by 2/3

- Hart et al, Ann Intern Med 2007;146

25% of CVAs are cryptogenic, or of undetermined source

- Hart et al, Lancet Neurol 2014;13

• With AF, the annual rate of CVAs is 4.5% – Arch Intern Med, 1994; 154: 1449-57

Prevalence of silent AF

- Depends on the screened population
 - Age
 - Comorbidity
 - Recipient of pacemaker or defibrillator
 - Recent CVA or TIA
 - History of arrhythmia
- However depends mostly on duration of monitoring

SEARCH-AF

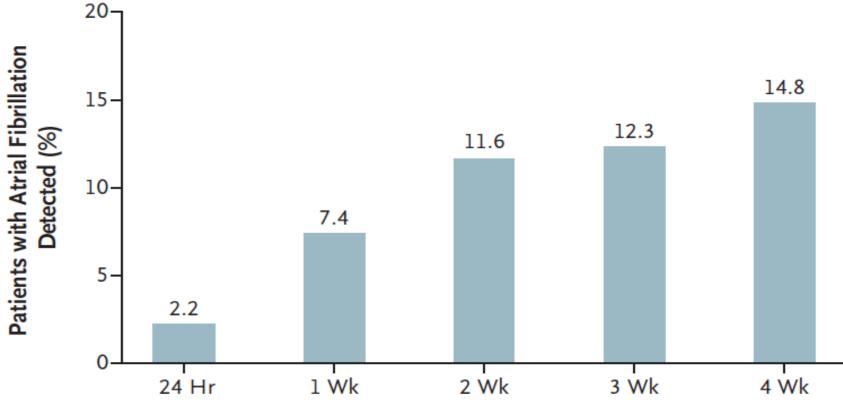
- 1000 patients, age > 65y
- Pharmacy screening
- iECG
 - AliveCor Kardia
- Newly identified AF in 1.5%

Opportunistic screening

- Screened subjects
 - Outpatient clinic WatchBP and AliveCor
 - ≥ 65 years with diabetes or HTN
 - -1.17% incidence of AF
 - Increases with age $(0.1\% < 65 \text{ years}, 0.9\% 65-74, 3\% \ge 75 \text{ years})$ Chan et al, Circulation 2016
- 65 years and more
 - Systematic review 30 studies
 - 1.4%, number needed to screen 70

Lowres et al, Thromb Haemost 2013

STROKESTOP Study


- Population screening in patients without known AF
- Individuals born in 1936-1937 (75 and 76 y at the time of the study) in Sweden
- 13 331 invitation to participate, 53.8% accepted
- Index ECG, twice daily ECG with handheld ECG recorder for 2 weeks
- New AF detected in 3.0% of patients
- 0.5% of newly diagnosed AF was found on index ECG

Subclinical AF

- 65 years and more
 - With elevated NT proBNP or LAE and CHADSVASc
 ≥2 or sleep apnea or BMI≥30
 - 256 patients
 - Continuous subcutaneous monitoring
 - Mean follow up 16 ± 4 months
 - AF detection rate 34.4% (duration five minutes or more)

Healey et al, Circulation 2017

Long-term monitoring

Duration of ECG Monitoring

Compliance: 82% of subjects completed > 3 weeks of monitoring Population of patients with cryptogenic stroke Anticoagulation begun in 18.6% of patients in the experimental group vs 11.1% in the control group *Embrace, NEJM, 2014*

Prevalence of silent AF: Patients with Pacemaker or Defibrillator

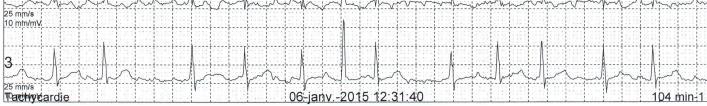
TABLE 1 Incidence of newly detected AF in the population with implanted PPMs or ICDs

Year	Trial	Device Indication	Clinical Profile of Patients	Incidence of AF
2002	Gillis et al ³⁷	PPMs for SND	All	157/231 (68%)
2003	MOST ³⁸	PPMs for SND	All	156/312 (50%)
2010	TRENDS ²¹	PPMs and ICDs for all indications	History of prior stroke, no history of AF, no OAC use, ≥1 stroke risk factor	45/163 (28%)
2012	TRENDS ³⁹	PPMs and ICDs for all indications	History of prior stroke, no history of AF, no OAC use, ≥1 stroke risk factor	416/1368 (30%)
2012	ASSERT ⁴⁰	PPMs and ICDs for all indications	History of hypertension, no history of AF, no OAC use	895/2580 <mark>(</mark> 34.7%)
2013	Healey et al ⁴¹	PPMs all indications	All	246/445 (55.3%)
2014	Gonzalez et al ⁴²	PPMs all indications	No history of AF	39/224 (17.4%)
2015	Benezet-Mazuecos et al ⁴³	PPMs and ICDs for all indications	All	28/109 (25.7%)
2015	Lima et al ⁴⁴	PPMs all indications	No history of AF	63/300 (21%)
2016	Benezet-Mazuecos et al ⁴⁵	PPMs and ICDs for all indications	History of hypertension	46/123 (37.3%)

Abbreviations: AF, atrial fibrillation; ASSERT, Asymptomatic Atrial Fibrillation and Stroke Evaluation in Pacemaker Patients and the Atrial Fibrillation Reduction Atrial Pacing Trial; ICDs, implantable cardioverter-defibrillators; MOST, Mode Selection Trial; OAC, oral anticoagulants; PPMs, permanent pacemakers; SND, sinus node disease TRENDS, The Relationship Between Daily Atrial Tachyarrhythmia Burden From Implantable Device Diagnostics and Stroke.

Dilaveris et al, Clinical Cardiology 2017

Consequences of silent AF


- One study 5550 patients with asymptomatic AF
- Adjusted stroke rate in 1460 untreated patients: 4% compared to 1% in matched control without AF
- Stroke risk in treated vs untreated patients: 1% vs 4%

SCREENING / MONITORING DEVICES

Holter

KK max

Recording duration 24 hrs/48 hrs/7 days depending on model

Cardiostat - Icentia

Continuous recording duration up to 14 days

1 lead

Shower resistant Replaceable electrodes

Zio patch - iRhythm

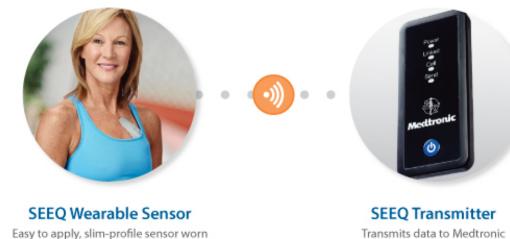
Continuous monitoring

Duration of monitoring up to 14 days Repositioning not recommended

Not available in Canada

SEEQ - Medtronic

discreetly under shirt or blouse.


Continuous telemetry system

Data transmitted to Medtronic analysis centre

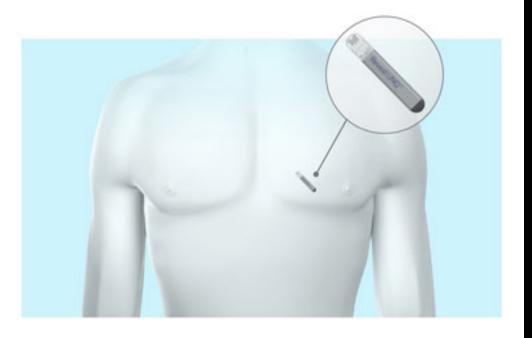
Analysis/notification 24/7

Monitoring duration up to 30 days

Not available clinically in Canada

Transmits data to Medtronic Monitoring Center

Spider Flash


External Loop Recorder (ELR) Event recorder

Records up to 40 days (lithium battery) or 15 days (alkaline battery) Up to 25 hours of ECG 2 leads

Other companies have similar products (King of Hearts, Braemar)

Analysis by medical electrophysiology technician may take a lot of time

Internal Loop Recorder

Event monitor Battery life: up to 3 years

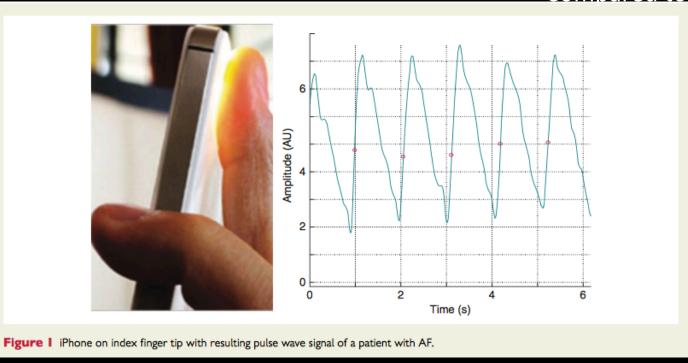
Alive Cor Kardia

SEARCH-AF study

1000 patients Pharmacy screening New AF diagnosis in 1.5%

Automatic AF detection algorithm

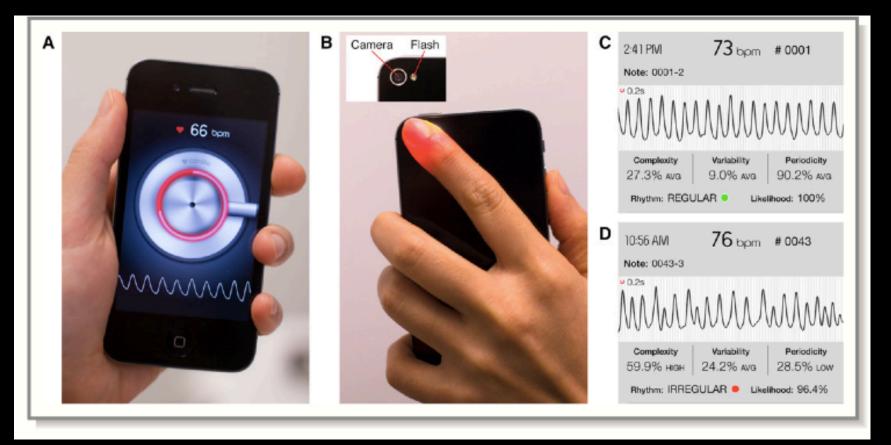
Sensitivity 98.5%


Specificity 91.4%

Approved by FDA and Health Canada

iPhone

80 patients: 40 sinus rhythm, 40 AF <u>Compared to</u> ECG

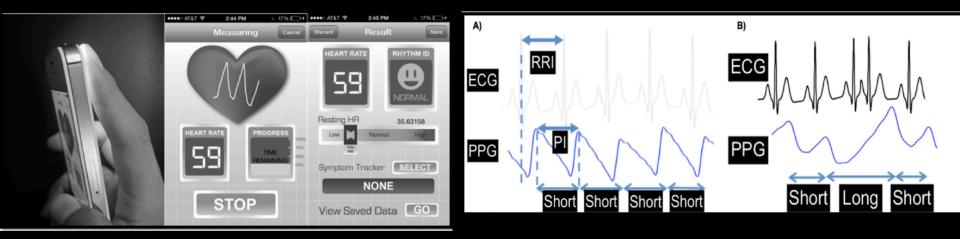


Filter and recording 2 minutes: Sensitivity 87.5% and specificity 95%

Filter and recording 5 minutes: Sensitivity 95% and specificity 95%

Krivoshei et al, Europace May 2017

Cardiio Rhythm

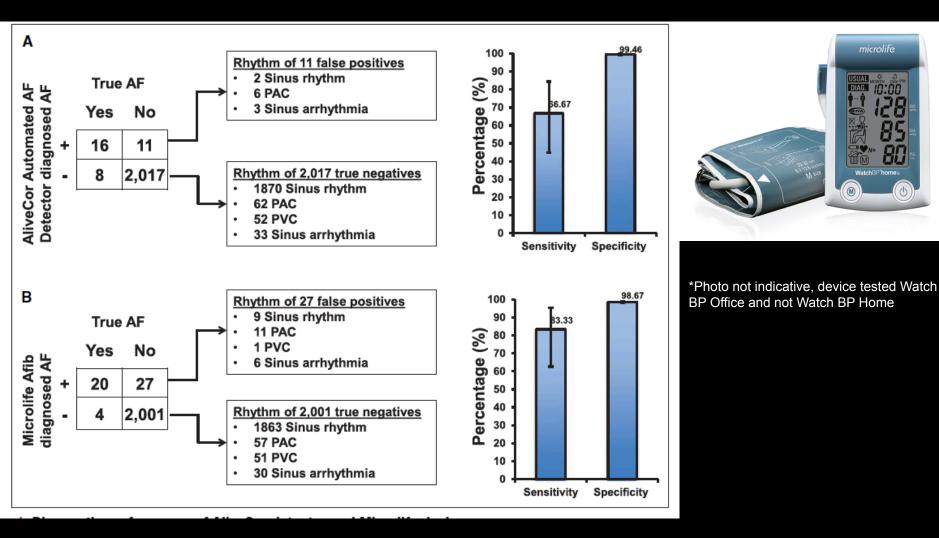


AF diagnostic based on absence of repeat pattern

Cardiio Rhythm sensitivity 93%, specificity 98%, PPV 53%, NPV 99% AliveCor sensitivity 71%, specificity 99%, PPV 77%, NPV 99%

Chan et al, Circulation 2016

PULSE-SMART



Pre- and post CVE Two-minute recording Compared to telemetry

Algorithm	Sensitivity	Specificity	Accuracy
Atrial Fibrillation	0.970	0.935	0.951
Premature atrial Contraction	0.667	0.980	0.955
Premature ventricular contraction	0.733	0.976	0.960

McManus et al, JCE January 2016

AliveCor vs WatchBP Office AFIB

Device	Method of Interpretation	Sensitivity (%)	Specificity (%)	Reference			
Pulse palpation		94 (84–97)	72 (69–75)	Cooke et al ⁵⁵			
Handheld single-lead ECGs							
AliveCor (Kardia) heart monitor	Algorithm only (based on presence of P wave and RR irregularity)	98 (89–100)	97 (93–99)	Lau et al ⁵⁶			
Merlin ECG event recorder	Cardiologist interpretation	93.9	90.1	Kearley et al57			
Mydiagnostick	Algorithm only (based on RR irregularity)	94 (87–98)	93 (85–97)	Tieleman et al58			
				Vaes et al59			
Omron HCG-801	Algorithm only (based on RR irregularity)	98.7 (93.2–100)	76.2(73.3–78.9)	Kearley et al57			
Omron HCG-801	Cardiologist interpretation	94.4	94.6	Kearley et al57			
Zenicor EKG	Cardiologist interpretation	96	92	Doliwa et al60			
Modified blood pressure monitors							
Microlife BPA 200 Plus	Algorithm only (based on pulse irregularity)	92	97	Marazzi et al61			
Microlife BPA 200	Algorithm only (based on pulse irregularity)	97 (81.4–100)	90 (83.8–94.2)	Wiesel et al62			
Omron M6	Algorithm only (based on pulse irregularity)	100	94	Marazzi et al61			
Omron M6 comfort	Algorithm only (based on pulse irregularity)	30 (15.4–49.1)	97 (92.5–99.2)	Wiesel et al62			
Microlife WatchBP	Algorithm only (based on pulse irregularity)	94.9 (87.5–98.6)	89.7 (87.5–91.6)	Kearley et al57			
Plethysmographs							
Finger probe	Algorithm only (based on pulse irregularity)	100	91.9	Lewis et al63			
iPhone photo-plethysmograph	Algorithm only (based on pulse irregularity)	97.0	93.5	McManus et al64*			

Freedman et al, Circulation 2017

New technologies

- The tech market is extremely invested in health and a great many of the tools that have come available are the subject of medical studies
- We can expect other technologies soon
 - Watches
 - Bracelets
 - Smart clothing
- Positive screening require ECG confirmation

Smartphones

• 64% of adults have a smartphone

• 50-64 years: 54%

• > 65 years: >27%

http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015

Should we screen for AF?

- AF is often asymptomatic or presents with atypical symptoms
- There is a treatement proven to reduce morbidity
- There are cheap, non invasive, available and reliable means for screening

• So YES!

Cost Effectiveness

- Based on data from STROKESTOP study
- Case based scenario for 1000 patients (75-76Y)
- 263 less patients with undetected AF
- 8 fewer strokes
- 11 more life-years
- 12 more quality adjusted life year (QALY)
- 4313 € per QUALY
- 6583 € per avoided stroke

ESC guidelines

Recommendations		Level
Opportunistic screening for AF is recommended by pulse taking or ECG rhythm strip in patients >65 years of age.	I	В
In patients with TIA or ischaemic stroke, screening for AF is recommended by short-term ECG recording followed by continuous ECG monitoring for at least 72 hours.	I	В
It is recommended to interrogate pacemakers and ICDs on a regular basis for atrial high rate episodes (AHRE). Patients with AHRE should undergo further ECG monitoring to document AF before initiating AF therapy.	I	в
In stroke patients, additional ECG monitoring by long-term non-invasive ECG monitors or implanted loop recorders should be considered to document silent atrial fibrillation.	IIa	В
Systematic ECG screening may be considered to detect AF in patients aged >75 years, or those at high stroke risk.	IIb	В

Arguments against screening

- There is increasing evidence that there is little temporal correlation between AF and stroke
- Although we know anticoagulation reduces stroke risk in patients with AF, we do not know if anticoagulation alters the risk of stroke in patients with short duration silent atrial arrhythmia (ongoing studies) – the duration threshold for anticoagulation is not yet clear

- Maybe the answer for now lies in the method of screening
- Long duration monitoring in patients without previous stroke in whom short duration AF is detected may bring more questions than answers
- Long duration monitoring for AF in patients with ESUS is required

- In patients without stroke:
- There is 86400 seconds in one day.
- Chances that a 30 seconds monitoring will catch a short duration non significant AF is quite small. More chances of missing paroxysmal AF than chances of catching non significant AF.

Screening

- Opportunistic screening in patients ≥ 65Y OR CHADS score ≥ 1 using a short duration rhythm strip/ECG/ pulse taking
 - Handheld ECG seems the best approach other means (pulse palpation, pulse oxymetry) need ECG confirmation
- Longer duration screening in high risk patients after ESUS – next talk!
- Areas for consideration for longer duration although no recommendation
 - Sleep apnea, heart failure, large left atrium, high PAC burden

Final word

- Screening for AF should be performed
- Duration of recording should depend on underlying risk of stroke/AF
- There is an urgent need to better define treatment threshold for short AF episodes less than 24h in patients without prior stroke
- With technological progress, continuous monitoring with watches / bracelets will soon be available and the question whether the AF burden needed to initiate anticoagulation will extend beyond the pacemaker clinic