

Subcutaneous ICD past, present and future

Dr Blandine Mondésert Electrophysiology service, Medicine department Adult Congenital Heart Disease Center Montreal Heart Institute Université de Montréal

DISCLOSURES

- Grants/Research Support:
 - Boston Scientific
- Speakers Bureau/Honoraria:
 - Boston Scientific
 - Medtronic
 - ✓ S^t Jude Medical

First ICD, non-endovascular...

TERMINATION OF MALIGNANT VENTRICULAR ARRHYTHMIAS WITH AN IMPLANTED AUTOMATIC DEFIBRILLATOR IN HUMAN BEINGS

M. Mirowski, M.D., Philip R. Reid, M.D., Morton M. Mower, M.D., Levi Watkins, M.D., Vincent L. Gott, M.D., James F. Schauble, M.D., Alois Langer, Ph.D., M. S. Heilman, M.D., Steve A. Kolenik, M.S., Robert E. Fischell, M.S., and Myron L. Weisfeldt, M.D. August 7, 1980

Acute procedural related complications

Late complications: Lead Dysfunction

Figure 2. Annual rate of defibrillation lead defects versus time after lead implantation. The annual rate of ICD lead defects increases with time (*P*<0.001, Cochran-Armitage test). *Failures per number at risk.

S-ICD

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

An Entirely Subcutaneous Implantable Cardioverter–Defibrillator

Gust H. Bardy, M.D., Warren M. Smith, M.B., Margaret A. Hood, M.B., Ian G. Crozier, M.B., Iain C. Melton, M.B., Luc Jordaens, M.D., Ph.D., Dominic Theuns, Ph.D., Robert E. Park, M.B., David J. Wright, M.D.,
Derek T. Connelly, M.D., Simon P. Fynn, M.D., Francis D. Murgatroyd, M.D., Johannes Sperzel, M.D., Jörg Neuzner, M.D., Stefan G. Spitzer, M.D., Andrey V. Ardashev, M.D., Ph.D., Amo Oduro, M.B., B.S., Lucas Boersma, M.D., Ph.D., Alexander H. Maass, M.D., Isabelle C. Van Gelder, M.D., Ph.D., Arthur A. Wilde, M.D., Ph.D., Pascal F. van Dessel, M.D., Reinoud E. Knops, M.D., Craig S. Barr, M.B.,
Pierpaolo Lupo, M.D., Riccardo Cappato, M.D., and Andrew A. Grace, M.B., Ph.D.

different positions of the device (high, low) Rest and effort

400 300 200 150 100 90 80 70 HEART RATE (25 mm/s 60 Scientific 14 cm GUIDE (Note: For screening, ECG electrodes should not extend beyond 14 cm an

INCORRECT CORRECT **UNACCEPTABLE** ACCEPTABLE PROFILE PROFILE LEAD LEAD ea **Zones**

Screening

Safety and Efficacy

	Spontaneous Shock Efficacy				
	First Shock	Final Shock in episode			
S-ICD Pooled Data*	90.1%	98.2%			
ALTITUDE First Shock Study ¹	90.3%	99.8%			
SCD-HeFT ²	83%				
PainFree Rx II ²	87%				
MADIT-CRT ³	89.8%				
LESS Study ⁴		97.3%			
* Excluded VT/VF Storm events					

* Burke MC et al. JACC 2015
1 Cha YM et al. *Heart Rhythm* 2013;10:702–708
2 Swerdlow CD et al. *PACE* 2007; 30:675–700
3 Kutyifa V, et al. *J Cardiovasc Electrophysiol* 2013;24:1246-52
4 Gold MR et al. *Circulation* 2002;105:2043-2048

Safety and Efficacy

Figure 1 PAS conversion testing. Patient flowchart for the PAS, showing the number of patients who had nonevaluable conversion tests, no testing 30 days from implantation, and at least 1 evaluable conversion test. Of those patients with evaluable conversion tests, all shock success rate and shock failure are shown along with the number of patients explanted and those patients who remained implanted. PAS = Post-Approval Study.

Safety and Efficacy

TABLE 3	Acute	Conversion	Testing
---------	-------	------------	---------

Final Conversion Result $(n = 861)$	Without Repositioning	% of Total	With Repositioning	% of Total	Overall	% of Total
Success ≤65 J	777	90.2	12	1.4	789	91.6
Success >65 J	36	4.2	2	0.2	38	4.4
Success at unknown energy	29	3.4	1	0.1	30	3.5
Summary of successful conversion	842	97.8	15	1.7	857	99.5
Failed conversion testing	2	0.2	2	0.2	4	0.5

Boersma L JACC 2017

Complications in studies

		TABLE 3	All Type I to III Complications			
				Comp	lications	
			Description	Events	Patients	
		Infection re	equiring device removal/revision	17	14 (1.7)	
		Erosion		12	11 (1.2)	
	S-ICD			Î	TV	-ICD
Acute Maior	Pooled D	ata	NCDR An	alysis	(Pete	rson et al, JAMA 2013 ¹
Complications (% of patients)			Meta-ana	lysis (van R	ees et. al. JACC 2011) ²
	2 %				3 -	5 %
	2 70				3-	5 76
	(Hematoma,	Lead o	or Device Mal-positio	n or D	isplac	ement, Pneumothorax)
		Adverse rea	action to medication	3	3 (0.3)	
		Inability to	communicate with the device	3	3 (0.3)	
		Inadequate	/prolonged healing of incision site	3	3 (0.3)	
		Incision/superficial infection		3	3 (0.3)	
		Suboptimal PG position		2	2 (0.2)	
	Other pro		edural complications	11	8 (0.9)	
		Other technical complications		5	5 (0.6)	
		Total		108	85 (9.6)	
		Values are n PG = pulse	(%). e generator; SVA = supraventricular arrhyth	mia.		

Burke et al. JACC 2015

Complications

	All patients		Female patients		Male patients	
Description	No. of events	n (%)	No. of events	n (%)	No. of events	n (%)
Device-related complications						
Unable to convert during the procedure	7	7 (0.4)	1	1 (0.2)	6	6 (0.5)
Inappropriate shock: oversensing	3	3 (0.2)	2	2 (0.4)	1	1 (0.1)
PG movement/revision	2	2 (0.1)	2	2 (0.4)	-	- ` `
PG-related discomfort	2	2 (0.1)	2	2 (0.4)	-	-
Pulseless electrical activity	1	1 (0.1)	1	1 (0.2)	-	
Suspected device malfunction	1	1 (0.1)	-	-	1	1 (0.1)
Total	16	16 (1.0)	8	8 (1.6)	8	8 (0.7)
Procedure-related complications						. ,
S-ICD system infection	19	19 (1.2)	9	9 (1.8)	10	10 (0.9)
Hematoma	7	7 (0.4)	4	4 (0.8)	3	3 (0.3)
Suboptimal electrode position	7	7 (0.4)	4	4 (0.8)	3	3 (0.3)
Inadequate healing of the incision site	2	2 (0.1)	2	2 (0.4)	-	- ` `
Incisional/superficial infection	2	2 (0.1)	2	2 (0.4)	-	-
Adverse reaction—hypotension	1	1 (0.1)	1	1 (0.2)	-	-
Adverse reaction—respiratory	1	1 (0.1)	-	-	1	1 (0.1)
Adverse reaction to medications	1	1 (0.1)	-	-	1	1 (0.1)
Cardiac arrest	1	1 (0.1)	-	-	1	1 (0.1)
Heart failure/worsening of heart failure	1	1 (0.1)	-	-	1	1 (0.1)
Pleural effusion	1	1 (0.1)	-	-	1	1 (0.1)
Pneumothorax	1	1 (0.1)	1	1 (0.2)	-	- ` ´
Respiratory failure	1	1 (0.1)	-	-	1	1 (0.1)
Trauma—procedure related	1	1 (0.1)	-	-	1	1 (0.1)
Total	46	45 (2.7)	23	22 (4.6)	23	23 (2.2)
Grand total	62	61 (3.7)	31	30 (5.8)	31	31 (2.8)

Table 2 Device- and procedure-related complications within 30 d of implantation

PG = pulse generator; S-ICD = subcutaneous implantable-cardioverter.

CENTRAL ILLUSTRATION Outcomes After S-ICD Implantation: 1-Year EFFORTLESS Registry

Boersma, L. et al. J Am Coll Cardiol. 2017;70(7):830-41.

Appropriate and inappropriate therapies

Lambiase EHJ 2014 Poole JE, Circ EP 2013

Université de Montréal

Complications: Inappropriate Therapies

Burke et al. JACC 2015

15 patients per center who were implanted with the subcutaneous implantabl cardioverter-defibrillator (S-ICD) than in subsequent patients (inappropriate shocks 19% vs. 6.7%; complications 17% vs. 10%).

Nordkamp, JACC 2012

Figure 3. Relative reduction of inappropriate shocks (for supraventricular tachyarrhythmias [SVT] or oversensing) associated with programming an arrhythmia discrimination zone at discharge.

Weiss, Circulation 2013

Programmation

Statistic / Category	Pooled IDE and EFFORTLESS Patients
Lowest Rate Zone	Mean ± SD: 197.5 ± 19.2 bpm
	Median: 200.0 bpm
<u>Zones (n, %)</u>	
Dual Zone	689 (80%)
Single Zone	170 (20%)
Vector (n, %)	
Primary	452 (53%)
Secondary	313 (37%)
Alternate	94 (11%)

Inappropriate Therapies

Inappropriate Therapies

April 2015

March 2016

CAPTURED S-ECG: 03/22/2016 04:14:20 PM 25 mm/sec 2.5 mm/mV

Device Settings WARNING Therapy: OFF

Shock Zone: 250 bpm Conditional Shock Zone: 220 bpm Post Shock Pacing: ON

Gain Setting: 1X Sensing Configuration: Secondary

S = Sense P = Pace N = Noise T = Tachy Detection C = Charge Start . = Discard Shock = Shock = Episode End

CAPTURED S-ECG: 03/22/2016 04:14:39 PM 25 mm/sec 2.5 mm/mV

Université de Montréal

INSIGHT[™] Algorithm: Architecture[™]

S-ECG signal similar to a surface ECG

4 double-detection algorithms designed to reduce over-sensing

3 rhythm discriminators to confirm therapy

INSIGHT[™] with SMART Pass Technology

The SMART Pass feature activates an additional high-pass filter designed to reduce cardiac over-sensing while still maintaining an appropriate sensing margin SMART Pass is only applied in the sensing path, while the morphology is unchanged

The SMART Pass filtering reduces the amplitude of lower frequency (slower moving) signals such as T-waves, by applying an additional High Pass filter (lets higher frequencies "pass" through).

Higher Frequency (faster moving) signals such as R-waves, VT and VF amplitudes remain largely unchanged.

SMART Pass example

SMART Pass OFF

SMART Pass ON

Difference in sensing when comparing SMART Pass OFF versus ON*

*Bench test Data

SMART Settings Screen

SMAR	r Settings	\bigcirc			1
Patient Name	The	erapy : <mark>On</mark>		\	ⅢⅠ 剂 Ⅲ
SMART Cha	ge automatically extends detection fo	ollowing non-si	ustained arrhythmias		
s	VART Charge has been extended by:	T	1.1 seconds	Reset	
SMART Pass	is automatically configured during th	ne Automatic S	etup or Manual Setur	process.	
	SMART Pass		ON	Disable	\supset
		Cancel			
					♪

S-ICD

aller 1:2X0 DEMO NOT FOR HUMAN USE Cameron Health, Inc. San Clemente. CA USA (RV) DF4-LLHH Tiny Can, Huge Breakthrough

EMBLEM[™] S-ICD System [⊲]

The EMBLEM[™] S-ICD System: 20% thinner with a 40% increase in projected longevity

Improves the implant experience and patient comfort

Decreases the need for change-out procedures 7.3 yrs Designed to provide remote patient management

20% reduction in device profile, resulting in a device thinner than the MDT Evera[™] XT ICD¹

2 year improvement in projected longevity with Boston Scientific battery technology²

Remote Patient Management Enabled³

- 1. Medtronic Evera XT manual. <u>www.medtronic.com/manuals</u>
- 2. EMBLEM S-ICD Labeling.
- 3. Latitude NXT 4.0 is an investigational device and restricted under U.S. Federal law to investigational use only. Not available for sale in the U.S.

EMBLEM MRI S-ICD System: 3rd Generation Technology

ImageReady[™] technology

Full Body, 1.5T MR-conditional System*21,22

Backwards Compatible with EMBLEM S-ICD System

* When conditions of use are met

Advanced INSIGHT[™] with SMART Pass technology

Effective AF/SVT discrimination²³ and further **reduction in Inappropriate Shocks** due to cardiac over-sensing²¹

Backwards Compatible with EMBLEM S-ICD System

AF Monitor™

Designed to assist in the **detection of** silent, new onset or the progression of **AF**²¹

2-incision technique

Figure 1 A: Creating the device pocket. B: Connecting distal end of electrode to the electrode insertion tool (EIT). C: Pulling the lead to the inferior parasternal incision. D: Tunneling the EIT and peel-away sheath to the superior parasternal position without making a parasternal incision. E: After the EIT is removed, the electrode is inserted in the sheath. F: Peeling away the sheath, leaving the electrode in the desired subcutaneous position. G: Final result after 2 weeks of follow-up.

Knops RE, HR 2013

Figure 2. Intermuscular pocket is created by blunt dissection between anterior surface of the servatus anterior muscle and the posterior surface of the latissimus dorsi muscle, over the left sixth rib between the midline and anterior axillary line (A and B). The pulse generator is placed into the virtual anatomical space between the two muscles and anchored to the fascia to prevent possible migration. Subsequently, the two muscles are sutured using conventional absorbable suture (C and D). [Color figure can be viewed at wileyonlinelibrary.com]

Local anesthsia

- Not anymore on general anesthesia
- Conscious sedation
- Local anesthesia and intercostal block
- PAS: 64.1% GA, 35.8% conscious sedation, 0.2% local anesthesia
 MR Gold HR 2017
- Monitored anesthesia care
- Serratus plane block

Essandoh MK, J Cardiotho Vasc Anesth 2016

Ueshima H, J Clin Anesth 2016

Midazolam and nabulphine

Peyrol M, JICE 2017

Canadian Guidelines

 We recommend a subcutaneous ICD be considered in patients with limited vascular access or pocket sites in whom an ICD is recommended (Strong recommendation; Low quality evidence)

Practical tip. The implantation of an S-ICD might be considered in patients in whom an ICD is recommended who have 1 of the following conditions: (1) congenital heart disease with no access to the ventricles; (2) congenital heart disease with right to left shunt resulting in increased risk of thromboembolic complications with transvenous ICD system; and (3) absence of a pocket site due to either previous device-related infection and/or chronic indwelling catheters.

The PRAETORIAN trial

Rationale and design of the PRAETORIAN trial: A Prospective, RAndomizEd comparison of subcuTaneOus and tRansvenous ImplANtable cardioverter-defibrillator therapy

Patients with documented therapy refractory monomorphic VT* Patients with VT <170 beats/min

- Patients having an indication for pacing therapy, according to the ACC/ AHA/HRS 2008 guidelines for device-based therapy for cardiac rhythm abnormalities¹⁷
- Patients failing appropriate QRS/T-wave sensing with the S-ICD ECG patient screening tool provided by Cameron Health
- Patients with incessant VT
- Patients with a serious known concomitant disease with a life expectancy of <1 y
- Patients with circumstances that prevent follow-up (eg, no permanent home or address)
- Patients who are unable to give informed consent

700 patients 7 centers in Netherlands

	TV-ICD			S-ICD		
	Monitor zone	Fast VT zone	VF zone	Conditional zone	Unconditional zone	
Arrhythmia detection zones (beats/min)	>167	>182	>250	>180	>250	
Time to initiate therapy (charge for shock or ATP) Charge time ICD (expected) Time to shock therapy (expected)	11 s	10 s 7-8 s 14-18 s	7.2 s	Fixed (18/24: 6 s) 10- 14-	Fixed (18/24: 4.3 s 12 s 18 s	
Theropy	No therapy	 1 burst of ATP* Shocks at maximum output 	Shocks at maximum output	Shocks at maximum output	Shocks at maximum output	
Pacing programming		VVI 40 beats/min		Postshock pacing: "On"		

• Hypothesis:

Compared to standard, single-chamber transvenous implantable cardioverter defibrillators (TV-ICDs), the use of a sub-cutaneous ICD (S-ICD) will result in fewer perioperative and long-term device-related complications, and will have a similar rate of failed appropriate clinical shocks and arrhythmic death

- PRAETORIAN
 - Netherlands
 - 700 patients
 - VVI TV-ICD vs S-ICD (1:1)
 - Combined endpoint (inappropriate shocks chocs and ICD complications (noninferiotity)
 - Efficacy
 - Mortality

• ATLAS:

- Canadian
- ✓ 500 patients
- VVI TV-ICD vs S-ICD (1:1)
- Peri-op and long-term complications (superiority)
- Failure of appropriate therapy and rhythmic death (noninferiority)
- Specific group in population

Multicenter Automatic Defibrillator Implantation Trial–Subcutaneous Implantable Cardioverter Defibrillator (MADIT S-ICD): Design and clinical protocol

Valentina Kutyifa, MD, PhD, ^a Christopher Beck, PhD, ^b Mary W. Brown, MS, ^a David Cannom, MD, ^c James Daubert, MD, ^d Mark Estes, MD, ^c Henry Greenberg, MD, ^f Ilan Goldenberg, MD, ^g Stephen Hammes, MD, PhD, ^h David Huang, MD, ⁱ Helmut Klein, MD, ^a Reinoud Knops, MD, PhD, ^j Mikhail Kosiborod, MD, PhD, ^k Jeanne Poole, MD, ¹ Claudio Schuger, MD, ^m Jagmeet P. Singh, MD, PhD, ⁿ Scott Solomon, MD, ^o David Wilber, MD, ^p Wojciech Zareba, MD, PhD, ^a and Arthur J. Moss, MD ^a, On behalf of the MADIT S-ICD Executive Committee *Rocbester, NY; Los Angeles, CA; Durbam, NC; Boston, MA; New York, NY; Tel Hasbomer, Israel; Amsterdam, the Netberlands; Kansas City, MO; Seattle, WA; Detroit, MI; and Maywood, IL*

Patients with diabetes mellitus, prior myocardial infarction, older age, and a relatively preserved left ventricular ejection fraction remain at risk for sudden cardiac death that is potentially amenable by the subcutaneous implantable cardioverter defibrillator with a good risk-benefit profile. The launched MADIT S-ICD study is designed to test the hypothesis that post-myocardial infarction diabetes patients with relatively preserved ejection fraction of 36%-50% will have a survival benefit from a subcutaneous implantable cardioverter defibrillator. (Am Heart J 2017;189:158-66.)

Futur: No more testing?

Figure 1. Outcomes comparison of S-ICD and TV-ICD: survival. Kaplan-Meier plot of survival in the S-ICD and TV-ICD patients. S-ICD: subcutaneous implantable cardioverter defibrillators; TV-ICD: transvenous implantable cardioverter defibrillators.

Mondésert et al. Heart Rhythm case report 2015

• Leadless + S-ICD with communication

Europace. 2016 Nov;18(11):1740-1747. Epub 2016 Mar 3.

Combined leadless pacemaker and subcutaneous implantable defibrillator therapy: feasibility, safety, and performance.

Tjong FV¹, Brouwer TF², Smeding L², Kooiman KM², de Groot JR², Ligon D³, Sanghera R⁴, Schalij MJ⁵, Wilde AA², Knops RE².

Author information

Abstract

AIMS: The subcutaneous implantable cardioverter-defibrillator (S-ICD) and leadless pacemaker (LP) are evolving technologies that do not require intracardiac leads. However, interactions between these two devices are unexplored. We investigated the feasibility, safety, and performance of combined LP and S-ICD therapy, considering (i) simultaneous device-programmer communication, (ii) S-ICD rhythm discrimination during LP communication and pacing, and (iii) post-shock LP performance.

METHODS AND RESULTS: The study consists of two parts. Animal experiments: Two sheep were implanted with both an S-ICD and LP (Nanostim, SJM), and the objectives above were tested. Human experience: Follow-up of one S-ICD patient with bilateral subclavian occlusion who received an LP and two LP (all Nanostim, SJM) patients (without S-ICD) who received electrical cardioversion (ECV) are presented. Animal experiments : Simultaneous device-programmer communication was successful, but LP-programmer communication telemetry was temporarily lost (2 ± 2 s) during ventricular fibrillation (VF) induction and 4/54 shocks. Leadless pacemaker communication and pacing did not interfere with S-ICD rhythm discrimination. Additionally, all VF episodes (n = 12/12), including during simultaneous LP pacing, were detected and treated by the S-ICD. Post-shock LP performance was unaltered, and no post-shock device resets or dislodgements were observed (24 S-ICD and 30 external shocks). Human experience : The S-ICD/LP patient showed adequate S-ICD sensing during intrinsic rhythm, nominal, and high-output LP pacing. Two LP patients (without S-ICD) received ECV during follow-up. No impact on performance or LP dislodgements were observed.

CONCLUSION: Combined LP and S-ICD therapy appears feasible in all animal experiments (n = 2) and in one human subject. No interference in sensing and pacing during intrinsic and paced rhythm was noted in both animal and human subjects. However, induced arrhythmia testing was not performed in the patient. Defibrillation therapy did not seem to affect LP function. More data on safety and performance are needed.

(A) Combined implantation of the leadless cardiac pacemaker (LCP) prototype in right ventricular apex and subcutaneous implantable cardioverterdefibrillator (S-ICD) in sheep. (B) Episode of simulated ventricular tachycardia (VT) (left ventricular pacing) followed by manually triggered S-ICD antitachycardia pacing (ATP)-command resulting in successful ATP-delivery by the LCP (10 beats, at 81% of coupling interval).

Merci!

Variable	PAS	EFFORTLESS ⁷	IDE study ⁵	Dutch cohort ⁸
Year published	2017	2014	2013	2012
Region	United States	Primarily European Union	Primarily United States	The Netherlands
No. of patients	1637	450	330	118
Age (y)	53.2 ± 15.0	49 ± 18	51.9 ± 15.5	50 ± 14
Sex: male	68.6	72	74.1	75
EF (%)	32.0 ± 14.6	42 ± 19	36.1 ± 15.9	41 ± 15
Primary prevention	76.7	63	79.4	38 ± 12
Heart failure	74.0	29	61.4	-
Hypertension	61.6	24	58.3	-
Diabetes	33.6	12	28.0	-
Kidney disease	25.6	9	-	-
Previous ICD	12.9	15	13.4	11

Table 3 Comparison of major cohorts with S-ICD

